

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Changelog

All notable changes to this project will be documented in this file.

The format is based on
[Keep a Changelog](http://keepachangelog.com/en/1.0.0/)
and this project adheres to
[Semantic Versioning](http://semver.org/spec/v2.0.0.html).

[v7.1.1] - 2023-07-01
Fixed
- The feature names of the NER datasets have been changed, so the code have been

updated to reflect this.

[v7.1.0] - 2023-05-15
Added
- Added support for the NorBERT3 models.

[v7.0.0] - 2023-05-13
Changed
- Now uses PyTorch 2.0, which (among other things) includes more control over the MPS.

This means that MPS out of memory errors will now be caught and dealt with like CUDA
out of memory errors, and we clear the MPS cache in between runs.

Fixed
- Ensure that type_vocab_size is not changed if it was previously set to 0. This

caused issues for some models when benchmarking question answering tasks.

[v6.3.0] - 2023-04-12
Added
- Now added support for benchmarking local models in the Hugging Face format (i.e.,

saved with the save_pretrained method). This automatically detects the framework
based on the file extension, but can also be set using the new –model-framework
argument. Thanks to @peter-sk for implementing this! :tada:

Fixed
- Now handles word-token alignment properly with SentencePiece tokenisers, which caused

some models not being able to be benchmarked on token classification tasks.

	Now handles UNK tokens during word-token alignment, where it locates the word that is
being tokenised into the UNK token, extracting the original value of the UNK token
and replacing the token by that value.

[v6.2.4] - 2023-03-10
Fixed
- If the Hugging Face Hub is down, throwing a HfHubHTTPError, then catch it, wait 30

seconds, and try again.

	Now always fixes the model_max_length attribute of the tokenizer, to prevent index
errors during finetuning.

Changed
- Changed raise-error-on-invalid-model to raise-errors. The flag now raises all

errors instead of skipping the model evaluations, which can be used for debugging.

[v6.2.3] - 2023-02-27
Fixed
- Ensure that the max_position_embeddings fix from v6.2.2 only occurs if the

tokenizer has a padding token, as this is used to set the model_max_length.

	If a model only has a JAX model but also has tags on the Hugging Face Hub from
another framework, then re-try the evaluation with from_flax set to True.

[v6.2.2] - 2023-02-25
Fixed
- If max_position_embeddings is smaller than any of the context lengths specified in

model_max_length and max_model_input_sizes then we use that as the the
tokenization max length. This avoids dimension errors related to truncation.

[v6.2.1] - 2023-02-22
Fixed
- Now does not include models with the word “finetuned” in their name when benchmarking

all models. These can still be benchmarked if specified directly.

[v6.2.0] - 2023-01-09
Changed
- Does not include by default models which indicate in their name that they’re using

more than a billion parameters, such as EleutherAI/gpt-j-6B.

Fixed
- Now sets the default language for the (upcoming) XMOD models.
- If a model’s token_type_embeddings layer has size (1, …) when benchmarking the

model for question answering, it is expanded to size (2, …) with the second row
being randomly initialised. This is required as question answering tasks need a least
two token type embeddings.

	Now catches OSError when loading tokenizers.

[v6.1.1] - 2023-01-02
Fixed
- Fixed error where some tokenizers did not have special token IDs registered.
- Now catches JSONDecodeError when loading tokenizers.
- Now catches KeyError when loading model configurations.

[v6.1.0] - 2022-12-29
Added
- Added model inference speed estimation benchmark. This can now be run by setting

either task or dataset to “speed”. E.g., scandeval -m <model_id> -d speed or
scandeval -m <model_id> -dt speed. This runs 10 iterations of 100 model inferences
on a document of length 2,600 (the document “This is a dummy document. ” repeated 100
times). The inference speed includes tokenization, and is powered by the pyinfer
package.

[v6.0.1] - 2022-12-28
Fixed
- Added prefix space to DeBERTa models.
- Now automatically changes a model’s type_vocab_size to at least 2 when benchmarking

the model on question-answering tasks. This previously caused an error when a model
config had it set to 1.

[v6.0.0] - 2022-12-24
Added
- Added support for decoder models such as the GPT-series.
- Added new Swedish sentiment classification dataset, SweReC, which is not

aspect-based, contrary to the previous ABSAbank-Imm dataset. This dataset is a
three-way classification task into the classical positive, neutral and negative
classes, thereby establishing uniformity between the sentiment classification
datasets in the different languages. The dataset comes from reviews from both
se.trustpilot.com and reco.se, and has been created by Kristoffer Svensson as part of
his Bachelor thesis “Sentiment Analysis With Convolutional Neural Networks:
Classifying sentiment in Swedish reviews”.

	Added historic BERT models from dbmdz as part of the default multilingual list.

	Added the –batch-size argument, which can be used to manually select a batch size.
Must be among 1, 2, 4, 8, 16 and 32.

Removed
- As SweReC is a drop-in replacement for ABSAbank-Imm, the latter has been removed from

the ScandEval benchmark.

Fixed
- Now deals with an issue with DeBERTaV2 models where pooler_hidden_size has been set

to a value different to hidden_size in its configuration, which made it impossible
to do sequence classification with the model. The former is now forced to be the same
as the latter, fixing the issue.

	Now ensures that tokenizers, model configurations and metrics are cached to the
ScandEval cache, rather than the default Hugging Face cache.

	Previously, if a model’s context length was greater than 1,000 it would be reduced to
512, since an unset context length results in a very large model_max_length value
of the tokenizer. This conflicted with longformer-style models whose context length
actually was greater than 1,000, so now this upper bound has been increased to
100,000.

	Now includes sacremoses as a dependency, as this is required by some tokenizers.

	Converted the id column in ScandiQA to a string, to avoid integer overflow errors
during preprocessing.

	If there is a torch operation which does not have a deterministic component, then a
warning will be issued instead of raising an error.

[v5.0.0] - 2022-11-03
Added
- A new argument, ignore_duplicates (or –ignore-duplicates/–no-ignore-duplicates

in the CLI) further ignores an evaluation if it has previously been evaluated. This
argument defaults to True.

	Now stores the task and the dataset languages to the evaluation file with each
evaluation.

	Now stores model metadata to the scandeval_benchmark_results file. Currently, this
includes the number of trainable model parameters, the size of the model’s vocabulary
and the model’s maximum sequence length.

Changed
- Evaluation results are now saved in a JSONL file instead of a JSON file, and results

are appended onto the file after every evaluation.

	You can now specify your Hugging Face authentication token in the use_auth_token
argument of Benchmarker rather than manually logging in with huggingface-cli
login. In the CLI an authentication token can also be applied directly using the new
–auth-token argument. If an authentication is provided in this way in the CLI,
then there is no need to add the –use-auth-token flag.

	The “random” models have now been renamed to “fresh”, to emphasise that they are not
random, but instead randomly initialized.

	The fresh models are now task independent, meaning that fresh-xlmr-base will now
adapt to the task at hand, rather than having to benchmark, e.g.,
fresh-xlmr-base-sequence-clf and fresh-xlmr-base-token-clf separately.

Fixed
- ScandEval now works on TPUs.
- Removed bf16 precision, as it only works for some GPUs.
- Should output less transformers logging now.
- Models were previously loaded in twice in the beginning of a benchmark. They are now

only loaded in once (but re-loaded during each of the 10 iterations to ensure that we
are starting from the same point).

	Changed the model architecture of the fresh-xlmr-base from Roberta to
XLMRoberta.

	The –dataset-task is now correctly filtering the datasets benchmarked.

	Some tokenizers are not adding special tokens, despite them having registered them.
These are now manually added, to ensure a proper evaluation of the models.

Removed
- Removed support for evaluating finetuned models, as the package was primarily used to

benchmark pretrained models anyway, and the change in datasets means that many
finetuned models would have been trained on (part of) the test sets, resulting in
artificially large scores. For evaluation of finetuned models, please check out the
aiai_eval Python package instead.

[v4.0.2] - 2022-07-22
Fixed
- Now garbage collects properly, where previously (from v4 onwards) the model and

model_dict were not removed from memory after each run, potentially causing a
memory leak.

Added
- Added the HuggingFaceHubDown and NoInternetConnection exceptions, to give more

information to the user when benchmarking fails.

	Added unit tests.

[v4.0.1] - 2022-07-14
Fixed
- Removed temporary printing of scores for each iteration.

[v4.0.0] - 2022-07-14
Added
- Compatibility with Apple Silicon. If no CUDA GPU is available then MPS GPUs will

automatically be used, if available.

	Added the datasets scala-da, scala-sv, scala-nb, scala-nn, scala-is and
scala-fo. These are all linguistic acceptability datasets, being a binary text
classification where a sentence has to be marked as grammatically correct or not.

	New randomly initialised ELECTRA-small model available for benchmarking, simply set
model-id to either ‘random-electra-small-sequence-clf or
‘random-electra-small-token-clf’. The randomly initialised XLM-RoBERTa-base model is
still available by replacing ‘electra-small’ with ‘xlmr-base’.

	Added –raise-error-on-invalid-model (-r) flag which raises an exception if an
invalid model is specified. By default this is off, meaning that it simply skips the
model if it is invalid.

	Added –model-language (-ml) and –dataset-language (-dl), which can be used
to specify the model/dataset languages to benchmark. The –language (-l) argument
will now be used for both models and datasets, where the –model-language and
–dataset-language will override –language for models/datasets if specified.

	Added –use-auth-token, which is a flag that can be used when evaluating private
models on Hugging Face Hub. This requires that the user has logged in via the
huggingface-cli login command.

	Added scripts used to create all the datasets used in ScandEval, to ensure full
transparency.

Changed
- Models are now evaluated every 30 training steps (corresponding to having processed

960 training samples) rather than every epoch. This decreases benchmarking time
significantly, as early stopping kicks in earlier if the model is not learning
anything.

	All training splits of datasets have been truncated to 1,024 samples. This has
multiple benefits:

	Faster benchmarking

	More reliance on pretraining data

	Enables consistent comparisons between different languages on the same task.

	Now uses warmup_ratio rather than warmup_steps, to ensure that 10% of the dataset
is used to warm up the learning rate.

	All CLI arguments now use hyphens (-) rather than underscores (_). For instance,
the –model_id argument has now been changed to –model-id.

	Text classification datasets are now using Matthew’s correlation coefficient as
metric, following the GLUE custom.

	Now requires PyTorch 1.12.0 or newer, to ensure compatibility with Apple Silicon.

	Renamed the Benchmark class to Benchmarker.

Deprecated
- Deprecated support for evaluating finetuned models, as the package was primarily used to

benchmark pretrained models anyway, and the change in datasets means that many
finetuned models would have been trained on (part of) the test sets, resulting in
artificially large scores. For evaluation of finetuned models, please check out the
aiai_eval Python package instead (under development).

Removed
- Removed support for Python 3.7, as this was incompatible with support for Apple

Silicon.

	Removed the Danish sentiment analysis datasets twitter-sent, europarl and lcc,
and instead using only the angry-tweets dataset for this task.

	Removed datasets dkhate, nordial and dalaj, to ensure a larger amount of
benchmark uniformity across languages.

	Removed all part-of-speech datasets from the benchmark, as there was too little
variance among the scores to differentiate models properly.

	Removed all dependency parsing datasets from the benchmark, both to focus more on the
semantic tasks as that’s closer to what is being used in practice, as well as to
reduce the benchmarking time, as these datasets took way longer to benchmark than the
others, due to the high number of labels.

	Removed the load_dataset function, as all datasets can now be found on the Hugging
Face Hub and can thus be loaded using the datasets package. All the datasets can be
found at https://huggingface.com/ScandEval.

Fixed
- Now disables tokenizer progress bars properly, using the

datasets.utils.disable_progress_bar function.

	Many of the datasets contained duplicate entries. These have now all been fixed.

	The –model-id now works as intended, where previously one was forced to use the
shortcut -m.

	Now correctly determines whether a NER dataset contains MISC tags. Previously this
required that both B-MISC and I-MISC tags were present in the dataset, where it
has now been changed to at least one of them.

[v3.0.0] - 2022-04-19
Changed
- During finetuning, the i’th model will only be evaluated on the i’th

bootstrapped dataset. This ensures that there will always be 10 scores, no
matter if we’re finetuning or purely evaluating, which means that the
confidence intervals will be more comparable.

Fixed
- Now sets seed in TrainingArguments rather than setting it explicitly in

PyTorch. This has the added bonus of ensuring that the `DataLoader`s used
during training also uses this seed, ensuring better reproducibility.

	Initialises model parameters with (fixed) different seeds during every
iteration, to ensure variability and reproducibility.

	Explicitly uses the PyTorch implementation of AdamW now, rather than the
(deprecated) transformers implementation.

	Fixed an error when a tokenizer has max_model_input_sizes set, but it being
empty. In this case, the default truncation length is set to 512.

[v2.3.2] - 2022-02-11
Fixed
- Fixed a bug where a model’s framework and pipeline tag were

indistinguishable, as they are both using the same tag-white tag now.

[v2.3.1] - 2022-02-11
Fixed
- Changed the tag-red, which referred to the HTML class containing the model

framework, to tag-white. This caused models to not be benchmarkable, as
their framework could not be determined.

[v2.3.0] - 2022-01-20
Added
- Specific branches/commits/tags can now be benchmarked, using the @

delimiter. For instance, scandeval -m model_id@commit_hash will benchmark
the model with model ID model_id, stored at commit with hash commit_hash.
Thanks to [@versae](https://github.com/versae) for contributing!

[v2.2.0] - 2022-01-18
Added
- Added more label synonyms for the DKHate dataset.

[v2.1.0] - 2022-01-17
Added
- Added support for flax models. Thanks to

[@versae](https://github.com/versae) for contributing!

[v2.0.0] - 2022-01-07
Fixed
- Changed the anonymisation procedure for the tweet datasets angry-tweets and

twitter-sent, now replacing user names by @USER and links by [LINK].

[v1.5.9] - 2021-12-14
Fixed
- Now removing all empty documents from datasets, as well as catching

KeyError when trying to remove empty documents from dataset.

[v1.5.8] - 2021-12-13
Fixed
- Now explicitly removing empty tokenisations from the dataset.

[v1.5.7] - 2021-12-10
Fixed
- Now catching _all_ CUDA error exceptions and treating them as running out

of memory. No harm done if this is not the case, however, as the script will
simply decrease the batch size until it reaches 1, and if CUDA errors persist
then it will skip that benchmark.

[v1.5.6] - 2021-12-10
Fixed
- When benchmarking a token classification dataset with a model whose tokenizer

does not have a fast variant yet, this raised an error as the word_ids
method of BatchEncoding objects only works when the tokenizer is fast. In
that case these word IDs are now computed manually. This can currently handle
WordPiece and SentencePiece prefixes (i.e., ## and ▁), and will raise an
error if the manual alignment of words and tokens fail.

	Catch the CUDA error CUDA error: CUBLAS_STATUS_ALLOC_FAILED, which in this
case is due to OOM.

[v1.5.5] - 2021-12-08
Fixed
- Deal with CUDA OOM errors when they occur on a replica, when multiple cores

are used.

[v1.5.4] - 2021-12-08
Fixed
- Remove reference to trainer when CUDA OOM error is dealt with.

[v1.5.3] - 2021-12-08
Fixed
- Only try to to merge the id2label and label2id conversions if the model

is finetuned. This caused some errors when a model was not finetuned but
somehow still had conversion dictionaries.

[v1.5.2] - 2021-12-08
Fixed
- Deal with models with tasks feature-extraction or sentence-similarity as

if they were fill-mask, meaning assume that they are merely pretrained
models, rather than finetuned.

[v1.5.1] - 2021-11-27
Fixed
- Fixed bug when evaluating a finetuned model.

[v1.5.0] - 2021-11-26
Changed
- Added progress bar description when evaluating models without finetuning them

first.

	Lowered the package requirements to the earliest possible versions.

Removed
- Removed support for TensorFlow and Jax models, due to them not working

properly anyway. They might be included at a later point, properly.

[v1.4.0] - 2021-11-25
Changed
- Now also outputting aggregated metrics in the resulting

scandeval_benchmark_results.json file. This json file now has keys
raw_metrics and total, with raw_metrics containing the previous (raw)
scores, and the value of the new total key has aggregated scores (means and
standard errors).

[v1.3.8] - 2021-11-25
Changed
- All training/evaluation progress bars are now removed when they are finished,

and the training progress bar has no total anymore, as it was misleading.

[v1.3.7] - 2021-11-25
Fixed
- Removed transformers logging during evaluation as well.

[v1.3.6] - 2021-11-25
Changed
- Now only updating the list of benchmarks in the Benchmark during

initialisation, and also logs it. This should make subsequent calls to the
benchmark method faster.

Fixed
- Removed transformers logging properly.

[v1.3.5] - 2021-11-23
Fixed
- Set the number of warmup steps to be the intended one training set pass,

where previously it was effectively 8x that amount, due to gradient
accumulation.

	Added the NER label synonyms OBJORG=ORG, LOCPRS=LOC, LOCORG=LOC and
ORGPRS=ORG.

	Explicitly added numpy to the install_requires list. This is normally not
a problem, as it’s a requirement for other required packages, but this
depends on the order in which the requirements are installed. This avoids
such errors caused by misordering the requirements.

[v1.3.4] - 2021-11-11
Fixed
- Indexing error during synonym setup of finetuned models.

[v1.3.3] - 2021-11-11
Fixed
- When a finetuned model has labels which are synonyms of each other, they are

now properly treated as synonyms, where previously this caused the model to
have misaligned id2label and label2id conversion dictionaries.

[v1.3.2] - 2021-11-11
Fixed
- Added the NER label synonyms GPE_LOC=LOC, GPE_ORG=ORG, LOC/ORG=LOC,

ORG/PRS=ORG, OBJ/ORG=ORG, as Norwegian and Swedish models tend to use
these.

[v1.3.1] - 2021-11-11
Fixed
- Fixed a bug in label synonyms when benchmarking a finetuned spaCy for NER.

[v1.3.0] - 2021-11-11
Added
- Added label synonyms for NER benchmarking, which will enforce a more fair

comparison of finetuned NER models, if the models have been trained on
datasets with different labelling (e.g., Person instead of PER).

[v1.2.1] - 2021-11-11
Removed
- Properly removed the Icelandic WikiANN-IS data files. It was removed from the

package, but the underlying files were still lying in the repository.

[v1.2.0] - 2021-10-15
Added
- Added the Icelandic NER dataset MIM-GOLD-NER. This can now be loaded as

mim-gold-ner in the Benchmark class and through the CLI.

Removed
- Removed the Icelandic WikiANN-IS dataset, as this has now been replaced by

the MIM-GOLD-NER dataset.

[v1.1.3] - 2021-10-04
Fixed
- Added truncation and padding when tokenising token classification datasets.

[v1.1.2] - 2021-09-27
Fixed
- Missing dependency parsing tags.

[v1.1.1] - 2021-09-27
Fixed
- Reduce validation batch size if CUDA runs out of memory, rather than only

reducing training batch size.

[v1.1.0] - 2021-09-13
Added
- Added Icelandic and Faroese translations of the Norwegian NoReC sentiment

analysis dataset. These can be loaded as norec-is and norec-fo,
respectively.

Changed
- When loading datasets with load_dataset, the result is now four dataframes,

rather than dictionaries. As the data can be accessed in the same way as with
dictionaries, this maintains backwards compatibility.

	If a finetuned NER model has been trained on NER tags not present amongst the
ones in the dataset, then these are either converted to MISC tags (if these
are present in the dataset) and otherwise O tags. This will make the
benchmarking of finetuned diverse NER models more fair.

Fixed
- There was an error when a SpaCy model was benchmarked on a dataset that it

was not trained on. It now raises an appropriate InvalidBenchmark
exception, and will be skipped in the CLI and with the Benchmark class.

[v1.0.2] - 2021-09-09
Fixed
- Replaced abbreviations with spaces, such as “o s v” in the SDT corpus, with

their proper version “o.s.v.”.

[v1.0.1] - 2021-09-09
Fixed
- The URLs for the wikiann-is and wikiann-fo were wrong and have been

corrected.

[v1.0.0] - 2021-09-09
Added
- Added the Icelandic and Faroese WikiANN datasets, for NER evaluation. They

can be loaded as wikiann-is and wikiann-fo in the CLI and via the
Benchmark class.

	Added the Icelandic and Faroese parts of the Universal Dependencies datasets,
containing POS and dependency parsing tags. They can be loaded as idt-pos,
idt-dep, fdt-pos and fdt-dep, respectively.

[v0.17.0] - 2021-09-09
Added
- Added the Dataset for Linguistic Acceptability Judgments (DaLaJ) dataset,

which is here used as a binary classification dataset, in which sentences
have to be classified as correct Swedish or not. It can be loaded as dalaj
in the CLI and via the Benchmark class.

	Added the ABSAbank-Imm dataset, which is an aspect-based sentiment analysis
dataset in Swedish, namely, the sentiment towards immigration. The original
dataset featured a floating point score between 0 and 5, which has been
reduced to a classifical three-way classification (negative, neutral and
positive). It can be loaded as absabank-imm in the CLI and via the
Benchmark class.

	Added the POS and dependency parsing parts of the Swedish Dependency Treebank
(SDT). They can be loaded as sdt-pos and sdt-dep in the CLI and via the
Benchmark class.

	Added the Stockholm-Umeå corpus 3.0 (SUC 3.0), a Swedish NER dataset. It can
be loaded as suc3 in the CLI and via the Benchmark class.

	Added abstract NerBenchmark, PosBenchmark and DepBenchmark classes, to
ensure uniformity.

Changed
- Uniformised all the NER datasets. They now all only have the NER tags PER,

LOC, ORG and MISC.

	Uniformised all the dependency parsing datasets. They now all only have the
main dependency parsing tags, without the subtags (so acl:cleft has been
changed to acl, for instance).

	Changed the columns in all text classification datasets to text and
label, to make it more uniform.

[v0.16.0] - 2021-09-07
Fixed
- Upped the number index tokens for dependency parsing from 100 to 512. This

will need to be done better in the future, but is a fix for now.

Added
- Added the random models random-roberta-sequence-clf and

random-roberta-token-clf to the default list of model IDs when benchmarking
all models.

[v0.15.1] - 2021-09-03
Fixed
- The list of dependency tags in the ndt-nb-dep and ndt-nn-dep were wrong.

They have now been changed to all the tags occurring in the training sets.

	The europarl_sent data folder has now been renamed to europarl, so that
it can be loaded correctly with load_dataset.

[v0.15.0] - 2021-09-02
Added
- Added the Bokmål and Nynorsk POS and DEP parts of the Norwegian Dependency

Treebank dataset (NDT). They can be loaded as ndt-nb-pos, ndt-nn-pos,
ndt-nb-dep and ndt-nn-dep, respectively, from the CLI and the Benchmark
class.

Removed
- Removed the EuroparlSubj and TwitterSubj datasets, as they were too easy

and did not really differentiate models.

	Removed the abstract SentimentClassificationBenchmark and
BinaryClassificationBenchmark, to simplify the classes. There is now only
one TextClassificationBenchmark, which always evaluates with macro-F1.

Changed
- Changed the name of europarl-sent to europarl, as europarl-subj now

does not exist anymore.

	Changed the nordial dataset to the original 4-way classification dataset.

[v0.14.1] - 2021-09-02
Fixed
- Remove duplicate model IDs when calling the CLI or Benchmark class without

any specified model IDs.

[v0.14.0] - 2021-08-31
Added
- Added the Bokmål and Nynorsk parts of the NorNE dataset, for named entity

recognition. They can be loaded with the norne-nb and norne-nn names.

	There is now a load_dataset function, which can load any dataset, using the
dataset’s name (same name as in the CLI). For instance,
load_dataset(‘angry-tweets’) loads the AngryTweets dataset. This can be
imported directly from the package: from scandeval import load_dataset. The
individual dataset loading functions can still be imported as before; e.g.,
from scandeval.datasets import load_angry_tweets.

Changed
- Refactored folder structure with benchmarks and datasets.
- Separated dane and dane-no-misc into two distinct benchmark classes. The

dane-no-misc can now also be loaded with the load_dataset function.

[v0.13.0] - 2021-08-30
Added
- Added the Norwegian Review Corpus (NoReC), a sentiment classification dataset

in Norwegian.

	Added the Bokmål/Nynorsk part of the Norwegian Dialect dataset (NorDial), a
binary classification dataset in Norwegian.

Changed
- Changed the early stopping patience to 2 + 1000 // len(train) from `2 + 250

// len(train)`, to allow more patience (and thus, more stability), for
smaller datasets.

[v0.12.0] - 2021-08-26
Changed
- Merged the lcc1 and lcc2 datasets into one lcc dataset, which is

reasonable as they have been annotated by the same person. The lcc2 dataset
was too small to give reasonable benchmarking results.

	Renamed the europarl2 dataset to europarl_sent

Removed
- Removed the europarl1 dataset, as it was too small to give reliable

benchmarking results. This dataset could not simply be added to the
europarl2 dataset, as with the new lcc dataset, as the annotaters are not
the same.

Fixed
- If errors occur during benchmarking, then garbage collect before skipping to

the next benchmark, to avoid memory issues.

[v0.11.2] - 2021-08-25
Fixed
- Issue with model_max_length in tokenizer meant that models with an ill-set

value of max_position_embeddings could not be benchmarked. Now, if
model_max_length is not set then the minimal value of the sizes in
max_model_input_sizes will be used (which is usually 512).

Changed
- Disabling CUDNN benchmark when using the pytorch framework, to enforce

better reproducibility.

[v0.11.1] - 2021-08-24
Changed
- Rather than bootstrapping the training dataset and using the results to

compute an estimator of the standard deviation, the same training dataset is
trained on all ten times, and the mean of these along with a confidence
interval is outputted.

Fixed
- Updated the model metadata fetching to the new HTML structure of the

HuggingFace Hub.

	A random seed is now set for all libraries, via the transformers.set_seed
function.

	Always update the list of all the benchmarks when calling the
Benchmark.benchmark method, to allow for possibility of setting new
benchmark parameters after initialisation.

[v0.11.0] - 2021-08-23
Added
- The subjective/objective part of the TwitterSent and Europarl2 datasets

have now been added as binary classification tasks, called TwitterSubj and
EuroparlSubj, respectively. These can now be benchmarked with the
Benchmark class and the CLI using the twitter-subj and europarl-subj
names, respectively.

	Added an abstract BinaryClassificationBenchmark, to streamline the binary
classification benchmark datasets, which now includes the DKHate,
TwitterSubj and EuroparlSubj datasets.

[v0.10.1] - 2021-08-20
Fixed
- Now catches IndexError during training.

[v0.10.0] - 2021-08-20
Fixed
- Properly filters by languages now via the language argument in the CLI and

the Benchmark class. As HuggingFace Hub does not have a keyword for
language, a search for language also means that any other non-language tag
with that name also shows up in the results. These are now manually removed.
This means it takes a few more seconds to compile the model list, but it will
at least be accurate.

	In case model_max_length has not been set in a model configuration, it
defaults to the value of max_position_embeddings. This fixes a problem with
some models not being able to be trained on datasets whose texts were too
long.

	Now handles the case where a non-classification model, such as a seq-to-seq
model, are being benchmarked on a classification dataset.

Added
- All the benchmark classes and Benchmark now has a benchmark method, which

does the same as the __call__ method. This is primarily so that it shows up
in the Sphinx documentation.

	Added the default LABEL_0 and LABEL_1 label synonyms for NOT and OFF
in the DKHate benchmark.

	Added the possibility of benchmarking randomly initialised RoBERTa models,
using the model IDs random-roberta-sequence-clf and
random-roberta-token-clf.

[v0.9.0] - 2021-08-19
Added
- Added the separate nb (Norwegian Bokmål) and nn (Norwegian Nynorsk)

language tags, on top of the general no (Norwegian).

	Added more multilingual models.

Fixed
- SpaCy models was evaluated wrongly on the dane-no-misc dataset, as their

MISC predictions was not replaced with O tags.

	When evaluating models finetuned for token classification on a text
classification task, a ValueError was raised, rather than an
InvalidBenchmark exception.

	If none of the model’s labels are among the dataset’s labels, and are not
even synonyms of them, then raise an InvalidBenchmark. This prevents things
like evaluating a finetuned sentiment model on a NER task.

	When evaluate_train was True, this previously evaluated the test set
instead.

Changed
- Changed Benchmark API. Now the constructor and the __call__ method have

the same arguments, except the model_id and dataset in __call__, where
the constructor sets the default values and the __call__ method can change
these to specific cases.

	Changed the benchmarking order. Now benchmarks all datasets for a model,
before moving on to the next model

	Renamed the multilabel argument to the more descriptive two_labels.

	Updated docstrings to be more accurate.

	Early stopping patience is now set to 2 + 250 // len(train), so that
smaller datasets can enjoy a bit more patience, but if the dataset contains
at least 250 samples then it will remain at the current 2 patience.

Removed
- Removed learning_rate, batch_size, warmup_steps and num_finetunings

arguments from the benchmarks. These are now fixed to 2e-5, 32, 25% of the
training dataset and 10, respectively. Note that the batch size will still
automatically decrease if the GPU runs out of memory.

[v0.8.0] - 2021-08-18
Changed
- Models are now being trained for much longer, but with an early stopping

callback with patience 2. This will enable a more uniform comparison between
models that require a different number of finetuning epochs.

Fixed
- There was a bug when evaluating a finetuned PyTorch model on a sequence

classification task, if the model had only been trained on a proper subset of
the labels present in the dataset.

Removed
- All individual benchmarks have been removed from __init__.py. They can

still be imported using their individual modules, for instance
from scandeval.dane import DaneBenchmark, but the idea is to use the
general Benchmark class instead.

[v0.7.0] - 2021-08-17
Changed
- Always ensure that a model can deal with the labels in the dataset when

finetuning. If the model has not been trained on the label, then this will
result in the model always getting that label wrong. For instance, this is
the case for finetuned NER models not having been trained on MISC tags, if
they are being evaluated on the DaNE dataset.

Fixed
- Fixed bug when evaluating SpaCy models.
- Only removing objects at memory cleanup if they exist at all.

[v0.6.0] - 2021-08-15
Added
- When finetuning models, 10% of the training data is used to evaluate the

models, which is used to choose the best performing model across all the
epochs trained. This will allow for a more fair comparison, as some models
degrade over time, while other models need a longer time to train.

Changed
- Uniformised the _log_metrics method for all benchmarks, now only defined in

BaseBenchmark.

Fixed
- Garbage collects when downsizing batch size, to not keep all the previous

models in memory.

	Typos in logging.

[v0.5.2] - 2021-08-13
Fixed
- Fixed bug when evaluate_train was set to False.

[v0.5.1] - 2021-08-13
Fixed
- The bootstrapping of the datasets is now done properly. Previously the

bootstrapped datasets were not converted to HuggingFace Dataset objects.

[v0.5.0] - 2021-08-12
Added
- It is possible to only evaluate on the test sets, to save some time. This can

be done in the Benchmark class using the evaluate_train argument, and in
the CLI with the –evaluate_train flag.

	Added progress_bar argument to Benchmark to control whether progress bars
should be shown, and added the no_progress_bar flag to the CLI for the same
reason.

Changed
- Updated epochs and warmup_steps of all the datasets to something more

reasonable, enabling better comparisons of the finetuned models.

	Changed calculation of confidence intervals, which is now based on
bootstrapping rather than the analytic approach. It will now evaluate ten
times on the test set and compute a bootstrap estimate of the standard error,
which is uses to compute an interval around the score on the entire test set.

[v0.4.3] - 2021-08-12
Fixed
- RuntimeErrors occuring during training will now raise an InvalidBenchmark

exception, which means that the CLI and the Benchmark class will skip it.
This is for instance caused when max_length has not been specified in the
model config, meaning that the tokeniser does not know how much to truncate.

[v0.4.2] - 2021-08-12
Fixed
- Now catching the error where tokenisation is not possible, due to the model

having been trained on a different task than what is present in the dataset.
E.g., if a generator model is trained on a classification task.

[v0.4.1] - 2021-08-12
Fixed
- Now catching the error when the model’s config does not align with the model

class. When using the CLI or Benchmark, these will be skipped.

[v0.4.0] - 2021-08-11
Added
- Added confidence intervals for finetuned models, where there is a 95%

likelihood that the true score would belong to the interval, given infinite
data from the same distribution. In the case of “raw” pretrained models, this
radius is added onto the existing interval, so that both the uncertainty in
model initialisation as well as sample size of the validation dataset affects
the size of the interval.

	Added garbage collection after each benchmark, which will (hopefully) prevent
memory leaking when benchmarking several models.

Changed
- New logo, including the Faroe Islands!
- Allow the possibility to include all languages and/or tasks in the CLI and

the Benchmark class.

	Added Icelandic and Faroese to default list of languages in CLI and the
Benchmark class.

	The default value for task is now all tasks, which also includes models
that haven’t been assigned any task on the HuggingFace Hub;

	If a model cannot be trained without running out of CUDA memory, even with a
batch size of 1, then the model will be skipped in Benchmark and the CLI.

Fixed
- New model is initialised if CUDA runs out of memory, to ensure that we are

now continuing to train the previous model.

	Dependency parsing now implemented properly as two-label classification, with
associated UAS and LAS metric computations. Works for pretrained SpaCy models
as well as finetuning general language models.

[v0.3.1] - 2021-08-10
Fixed
- Reduces batch size if CUDA runs out of memory during evaluation.
- Loading of text classification datasets now working properly.

[v0.3.0] - 2021-08-10
Changed
- The W036 warning message from SpaCy is no longer shown.

Fixed
- Raise InvalidBenchmark if model cannot be loaded from the HuggingFace Hub.

[v0.2.0] - 2021-08-09
Added
- Added the part-of-speech tagging task from the Danish Dependency Treebank.

Can be loaded with load_ddt_pos and used in Benchmark as ddt-pos.

	Added the dependency parsing task from the Danish Dependency Treebank.
Can be loaded with load_ddt_ddt and used in Benchmark as ddt-dep.

	Documentation section and link to README

	The Benchmark class and the CLI now accepts a batch_size argument

Changed
- Benchmark arguments languages, tasks, model_ids and datasets have

been renamed to language, task, model_id and dataset, to keep it
consistent with the CLI.

	When loading datasets, these will now be four dictionaries instead of lists,
to allow for distinguishing features and labels.

	batch_size arguments can now only be among 1, 2, 4, 8, 16 and 32, and the
corresponding gradient accumulation will be set to 32, 16, 8, 4, 2 and 1,
respectively. This is to ensure that all finetuning is done using the same
effective batch size, to ensure fair comparisons.

	Batch sizes are automatically halved if the GPU runs out of memory, with
gradient accumulation correspondingly doubles.

	Evaluation of SpaCy models on token classification tasks are more accurate.

Fixed
- README typos fixed, and image renders correctly

[v0.1.0] - 2021-08-05
Added
- First beta release
- Features Danish sentiment, hate speech detection and named entity

recognition datasets for benchmarking

 <div align=’center’>

</div>

Evaluation of pretrained language models on mono- or multilingual Scandinavian language tasks.

[![License](https://img.shields.io/github/license/saattrupdan/ScandEval)](https://github.com/saattrupdan/ScandEval/blob/main/LICENSE)
[![LastCommit](https://img.shields.io/github/last-commit/saattrupdan/ScandEval)](https://github.com/saattrupdan/ScandEval/commits/main)
[![Code Coverage](https://img.shields.io/badge/Coverage-64%25-yellow.svg)](https://github.com/saattrupdan/ScandEval/tree/main/tests)
[![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-2.0-4baaaa.svg)](https://github.com/saattrupdan/ScandEval/blob/main/CODE_OF_CONDUCT.md)

Installation
To install the package simply write the following command in your favorite terminal:
`
$ pip install scandeval
`

Quickstart
Benchmarking from the Command Line
The easiest way to benchmark pretrained models is via the command line interface. After
having installed the package, you can benchmark your favorite model like so:
`
$ scandeval --model-id <model-id>
`

Here model_id is the HuggingFace model ID, which can be found on the [HuggingFace
Hub](https://huggingface.co/models). By default this will benchmark the model on all
the datasets eligible. If you want to benchmark on a specific dataset, this can be done
via the –dataset flag. This will for instance evaluate the model on the
AngryTweets dataset:
`
$ scandeval --model-id <model-id> --dataset angry-tweets
`

We can also separate by language. To benchmark all Danish models on all Danish
datasets, say, this can be done using the language tag, like so:
`
$ scandeval --language da
`

Multiple models, datasets and/or languages can be specified by just attaching multiple
arguments. Here is an example with two models:
`
$ scandeval --model-id <model-id1> --model-id <model-id2> --dataset angry-tweets
`

The specific model version to use can also be added after the suffix ‘@’:
`
$ scandeval --model-id <model-id>@<commit>
`

It can be a branch name, a tag name, or a commit id. It defaults to ‘main’ for latest.

See all the arguments and options available for the scandeval command by typing
`
$ scandeval --help
`

Benchmarking from a Script
In a script, the syntax is similar to the command line interface. You simply initialise
an object of the Benchmarker class, and call this benchmark object with your favorite
models and/or datasets:
`
>>> from scandeval import Benchmarker
>>> benchmark = Benchmarker()
>>> benchmark('<model-id>')
`

To benchmark on a specific dataset, you simply specify the second argument, shown here
with the AngryTweets dataset again:
`
>>> benchmark('<model_id>', 'angry-tweets')
`

If you want to benchmark a subset of all the models on the Hugging Face Hub, you can
specify several parameters in the Benchmarker initializer to narrow down the list of
models to the ones you care about. As a simple example, the following would benchmark
all the Nynorsk models on Nynorsk datasets:
`
>>> benchmark = Benchmarker(language='nn')
>>> benchmark()
`

Citing ScandEval
If you want to cite the framework then feel free to use this:

```
@inproceedings{nielsen2023scandeval,


title={ScandEval: A Benchmark for Scandinavian Natural Language Processing},
author={Nielsen, Dan Saattrup},
booktitle={The 24rd Nordic Conference on Computational Linguistics},
year={2023}





}

## Remarks
The image used in the logo has been created by the amazing [Scandinavia and the
World](https://satwcomic.com/) team. Go check them out!

## Project structure
```
.
├── .flake8
├── .github
│ └── workflows
│ └── ci.yaml
├── .gitignore
├── .pre-commit-config.yaml
├── CHANGELOG.md
├── LICENSE
├── README.md
├── gfx
│ └── scandeval.png
├── makefile
├── poetry.toml
├── pyproject.toml
├── src
│ ├── scandeval
│ │ ├── __init__.py
│ │ ├── benchmark_config_factory.py
│ │ ├── benchmark_dataset.py
│ │ ├── benchmarker.py
│ │ ├── callbacks.py
│ │ ├── cli.py
│ │ ├── config.py
│ │ ├── dataset_configs.py
│ │ ├── dataset_factory.py
│ │ ├── dataset_tasks.py
│ │ ├── exceptions.py
│ │ ├── hf_hub.py
│ │ ├── languages.py
│ │ ├── model_loading.py
│ │ ├── named_entity_recognition.py
│ │ ├── question_answering.py
│ │ ├── question_answering_trainer.py
│ │ ├── scores.py
│ │ ├── sequence_classification.py
│ │ ├── speed_benchmark.py
│ │ ├── types.py
│ │ └── utils.py
│ └── scripts
│ ├── create_angry_tweets.py
│ ├── create_dane.py
│ ├── create_mim_gold_ner.py
│ ├── create_norec.py
│ ├── create_norne.py
│ ├── create_scala.py
│ ├── create_scandiqa.py
│ ├── create_suc3.py
│ ├── create_swerec.py
│ ├── create_wikiann_fo.py
│ ├── fill_in_missing_model_metadata.py
│ ├── fix_dot_env_file.py
│ ├── load_ud_pos.py
│ └── versioning.py
└── tests

├── __init__.py
├── conftest.py
├── test_benchmark_config_factory.py
├── test_benchmark_dataset.py
├── test_benchmarker.py
├── test_callbacks.py
├── test_cli.py
├── test_config.py
├── test_dataset_configs.py
├── test_dataset_factory.py
├── test_dataset_tasks.py
├── test_exceptions.py
├── test_hf_hub.py
├── test_languages.py
├── test_model_loading.py
├── test_named_entity_recognition.py
├── test_question_answering.py
├── test_question_answering_trainer.py
├── test_scores.py
├── test_sequence_classification.py
├── test_speed_benchmark.py
├── test_types.py
└── test_utils.py


```




            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





